Multisensor Poisson Multi-Bernoulli Filter for Joint Target–Sensor State Tracking
نویسندگان
چکیده
منابع مشابه
Multisensor Poisson Multi-Bernoulli Filtering with Uncertain Sensor States
In a typical multitarget tracking (MTT) scenario, the sensor state is either assumed known, or tracking is performed based on the sensor’s (relative) coordinate frame. This assumption becomes violated when the MTT sensor, such as a vehicular radar, is mounted on a vehicle, and the target state should be represented in a global (absolute) coordinate frame. Then it is important to consider the un...
متن کاملPoisson multi-Bernoulli mixture filter: direct derivation and implementation
We provide a derivation of the Poisson multiBernoulli mixture (PMBM) filter for multi-target tracking with the standard point target measurements without using probability generating functionals or functional derivatives. We also establish the connection with the δ-generalised labelled multiBernoulli (δ-GLMB) filter, showing that a δ-GLMB density represents a multi-Bernoulli mixture with labell...
متن کاملMulti-Bernoulli filter and hybrid multi-Bernoulli CPHD filter for superpositional sensors
Superpositional sensor model can characterize the observations in many different applications such as radio frequency tomography, acoustic sensor network based tracking and wireless communications. In this paper we present two filters based on the random finite set (RFS) theory the multi-Bernoulli filter and its variant the hybrid multi-Bernoulli CPHD filter for superpositional sensors. We prov...
متن کاملMulti-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate
Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors....
متن کاملJoint Conditional Random Field Filter for Multi-Object Tracking
Object tracking can improve the performance of mobile robot especially in populated dynamic environments. A novel joint conditional random field Filter (JCRFF) based on conditional random field with hierarchical structure is proposed for multi‐object tracking by abstracting the data associations between objects and measurements to be a sequence of labels. Si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Intelligent Vehicles
سال: 2019
ISSN: 2379-8904,2379-8858
DOI: 10.1109/tiv.2019.2938093